
International Journal of Engineering Applied Sciences and Technology, 2024
Vol. 8, Issue 12, ISSN No. 2455-2143, Pages 234-237

Published Online April 2024 in IJEAST (http://www.ijeast.com)

234

DEVELOPMENT AND IMPLEMENTATION OF

VIDEO LANGUAGE TRANSLATOR USING

PYTHON LIBRARIES FOR GLOBAL

COMMUNICATION

Deepanshu Koli, Anmol Singal, Dr. Amrita Goel, Dr. Vasudha Bahl, Ms. Nidhi Sengar

Maharaja Agrasen Institute of Technology

Information Technology and Engineering

Abstract: This Research paper examines specific

development and implementation of video language

interpretation, and uses Python libraries for rigorous

analysis. The main objective of this new tool is to extract

audio content from a given video, translate the extracted

audio into the language of the target location, then

recombine the translated audio as an exclusive video

broadcast should change the format, thereby putting

information in the hands of a global target audience.

Keywords: Python, MoviePy, Spleeter, Whisper

Timestamped Model, pyttsx3, pydub, flask

I. INTRODUCTION

In the complexity of multimedia communication, the

challenge of overcoming language barriers in video content

emerges as a difficult effort. This study uses the skills of

Python libraries to examine the challenges of multimedia

interpretation, delving into the specific development and

precautions of video language interpreters. The main

purpose of this tool is to seamlessly navigate through the

languages of video content. By extracting audio from a

given video source, the system attempts to overcome

language limitations with an advanced

rendering system. The decoded audio is then seamlessly

reintegrated into the original video, imagining changes that

would change the global distribution of information. As

technology continues to evolve, the need for more versatile

and effective solutions to prevent linguistic fragmentation

in multimedia becomes more apparent This development

attempts to address this need through micro capabilities of

customized Python libraries for analysing multimedia

applications. The video language translator aims to

empower content creators to reach a global audience with

unprecedented ease.

II. BACKGROUND

In the rapidly evolving landscape of multimedia

communication, the convergence of technologies and

languages presents both challenges and opportunities.

Canvas videos often face formidable language barriers,

making them inaccessible to a global audience. [1]

As multimedia content continues to flourish, the need to

transcend language boundaries becomes important. The

complexity of this task is tackled by leveraging the power

of Python libraries, presenting a careful and versatile

approach to multimedia interpretation. We focus on

developing and deploying video language interpreters

functionally, which attempts to complicate language

barriers in video content. The main objective of the

proposed tool is ambitious but flexible. Making full use of

Python libraries such as MoviePy, Spleeter, Whisper

Timestamped Model, pyttsx3, and pydub, we aim to

develop a solution that easily extracts audio from videos,

translates them into audio transmissions language of the

target audience, and it recombines the decoded audio with

the original video. This visionary approach envisions a

worldwide spread of information unhindered by language

barriers.

With multiple languages, state-of-the-art technologies, and

dynamic multimedia communication, this research stands

as a beacon when content producers want to reach a global

audience and the proposed video translator shows up as a

potential game changer. The integration of standard Python

libraries in this effort not only demonstrates technical

prowess but positions this research as an important

contribution to the evolving field of multimedia translation

and accessibility.[2]

III. METHOD

1. Audio extraction and translation

a. video_to_audio

Purpose: Extract voice from video input and save it for

interpretation.

Libraries used:

• Subprocess for executing external commands.

• Moviepy for video processing. • Spletter provides audio

International Journal of Engineering Applied Sciences and Technology, 2024
Vol. 8, Issue 12, ISSN No. 2455-2143, Pages 234-237

Published Online April 2024 in IJEAST (http://www.ijeast.com)

235

separation in the form of adding voice.

Approach: Use the Spleeter to remove voice and extras

from the video input. Save the voice as a separate audio

file.[4]

b. audio_to_srt

Purpose: Translate the extracted audio into the language of

your choice.

Libraries used:

• Subprocess for executing external commands.

• whisper_timestamped for audio translation

Approach: Use the Whisper program to decode the

extracted audio. Save the decoded audio as a file.[5]

2. Subtitle generation from rendered audio

a. srt_to_audio

Purpose: Create subtitles from rendered audio.

Libraries used:

• pysubparser for parsing SRT files. • pyttsx3 For text-to-

speech

integration.

• pydub for audio processing.

Approach: Use the pysubparser library to parse the

decoded audio into subtitles. Put the material together into a

talk for each subheading. Combine the audio parts to create

the final audio file.[7]

3. Video Recombination

a. video-audio

Purpose: Configure the entire

functionality by integrating the

functionality of the above modules.

Libraries used:

• os For operating system services.

• shutil for file-directory operations.

• moviepy editing videos. [3]

• Other custom modules

Approach:

• Add music to video input using video_to_audio.py.

• Use audio_to_srt.py to translate the video audio to the

language of your choice.

• Create audio from defined subtitles using srt_to_audio.py.

• Combine the input video with the decoded audio to

produce the final video output.

b. ISO Mapping

Purpose: Provide a mapping between user-friendly

language names and ISO grammar rules. [11]

Approach: Use a dictionary

(language_mapping) to map user-friendly language names

to ISO language codes.

4. Web Interface

Purpose: Acts as a user interface for uploading and starting

processing of videos.

Libraries used:

• Flask for web development. [8] • Flask-SocketIO provides

real-time communication between server and client. [9]

Approach: Allow users to upload a video file and select

the output language. Use SocketIO to issue additional

enhancements at the beginning of the process.

5. Cleanup

Purpose: Repair temporary files and directories created

during operation.

Approach: Use the cleanup_files function to remove

temporary files and directories.

6. Example implementation

Purpose: Demonstrate how to use the program to process a

sample video file.

Approach:

• Set the video channel.

• Add music to video, translate audio, create audio from

notes, and merge video and audio.

• Delete the temporary files after processing.

The Method combines audio processing, rendering and

video reconnection using several Python script libraries.

This comprehensive approach accomplishes the ultimate

goal of creating multilingual video for a global audience by

breaking language barriers. The integrated Python libraries

present a complete solution for video language

interpretation.

The web interface provides a user-friendly way to interact

with the tool, making it accessible to a wider audience.

Topic Analysis

Multimedia processing :

• Video-to-Audio Extraction: The code uses the MoviePy

library to extract audio from Video files

(video_to_audio.py).

• Audio translation: The Audio_to_srt.py module uses the

Whisper API for audio translation, converting the extracted

audio to the desired language.

• Audio-video recombination: Using MoviePy, the

translated audio is added to the original video, creating a

video playback (main.py). [3]

Language translation and mapping:

• Whisper API for Audio Translation:

The audio_to_srt.py module integrates the Whisper API for

audio content translation, allowing for precise language

translation.[13]

International Journal of Engineering Applied Sciences and Technology, 2024
Vol. 8, Issue 12, ISSN No. 2455-2143, Pages 234-237

Published Online April 2024 in IJEAST (http://www.ijeast.com)

236

• Language mapping:

the mapping_language.py module maps the name of the

destination language to an ISO code, simplifying language

identification during the translation process.

SRT (SubRip Subtitle) Integration:

• Subtitle parsing:

The srt_to_audio.py module parses SRT subtitle files,

extracting captions when overwritten.

• Text-speech synthesis:

The tool uses GTTS to assemble text from subtitles into

audio segments, contributing to the overall audio

output.[12]

Audio Processing with Spleeter:

• Separating music with a Spleeter: The spleeter in the

video_to_audio.py module separates music from videos,

enhancing the audio experience.

 • Audio-video integration:

Separated music is added back to the video, enhancing

multimedia content with advanced audio.

Web Application for User Interface:

• Flask Framework: The delivered Flask web application

enables users to interact with the language translation tool

using an intuitive interface.

• User Input Control: Users can choose which language to

go to by streaming videos through a web browser (app.py).

• Starting the language translation process: The

Start_processing method triggers the processing task,

starting the language

translation process.

Real-time updates on Socket.IO:

• Socket.IO integration: Socket.IO is used for real-time

communication between server and client.

• New enhancements: The tool sends new enhancements

to the client in the language translation process, and

notifies users of

ongoing tasks.

Experiment

1. Set up a virtual Environment: Make sure you have the

necessary dependencies installed and create a virtual

environment.

2. Run the Flask application: Start the web server and run

the Flask application.

3. Upload the video: Use the web interface to upload the

video file by clicking the appropriate button. Specify the

language in which you want to translate.

4. Processing: The application will start processing the

uploaded video. New enhancements will be displayed on

the terminal where the Flask application is running.

Monitor real-time progress through web interface.

5. Check the results: Once activated, the application

should provide a link or button to view/download the video

output. Check

the 'uploads' folder for the generated 'output_video.mp4'.

Testing

6. Testing: Test the application with videos and speeches

to see how it works in different scenarios.

7. Modify parameters: Experiment with different

parameters in code, such as language mapping, resource

settings, or translation patterns. Make adjustments as

needed and monitor impact.

8. Evaluate results: Check the quality of both decoded

audio and video output. Consider things like accuracy,

clarity, and consistency.

9. Document findings: List any challenges during

implementation and identify possible improvements or

expansions of the tool. Document findings, issues, and

potential improvements in the report.

10. Shared results: If applicable, share your test results,

code changes, and any improvements with the community

or in a report.

 Spoken Language is Spanish Spoken Language is converted to English

En este pueblo peruano aún sobreviven y se celebran las

tradiciones que trajeron los colonos austroalemanes en el

siglo XIX.

In this Peruvian town, the traditions that were brought by

Austro-German colonists in the 19th century still survive

and are celebrated.

International Journal of Engineering Applied Sciences and Technology, 2024
Vol. 8, Issue 12, ISSN No. 2455-2143, Pages 234-237

Published Online April 2024 in IJEAST (http://www.ijeast.com)

237

IV. REFERENCES

[1]. VideoDubber: Machine Translation with Speech-

Aware Length Control for Video Dubbing Yihan

Wu1*, Junliang Guo2 , Xu Tan2 , Chen Zhang3 ,

Bohan Li3 , Ruihua Song1† , Lei He3 , Sheng

Zhao3 , Arul Menezes4 , Jiang Bian2

[2]. Multilingual video dubbing—a technology review

and current challenges Dan Bigioi and Peter

Corcoran

[3]. MoviePy Library: Newman, Z. (2020). "MoviePy:

Video editing with Python." GitHub Repository.

https://github.com/Zulko/moviepy

[4]. Spleeter Library: Deezer S.A. (2021). "Spleeter:

Deezer source separation library." GitHub

Repository. https://github.com/deezer/spleeter

[5]. Whisper Timestamped Model: Whisper Labs.

(2022). "Whisper Timestamped Model." Whisper

Labs Documentation.

https://whisper.ai/docs/whisper timestamped-model

[6]. pyttsx3 Library: "pyttsx3 documentation." Read

the Docs. https://pyttsx3.readthedocs.io/en/lat est/

[7]. pydub Library: Jiaaro. (2022). "pydub: Audio

processing in Python." GitHub Repository.

https://github.com/jiaaro/pydub

[8]. Flask Framework: Grinberg, M. (2022). "Flask: A

lightweight WSGI web application framework in

Python." Flask Documentation.

https://flask.palletsprojects.com/

[9]. Flask-SocketIO: "Flask-SocketIO documentation."

Read the Docs. https://flasksocketio.readthedocs.io

/en/latest/

[10]. Subprocess Module: "subprocess — Subprocess

management." Python Documentation.

https://docs.python.org/3/library/su bprocess.html

[11]. ISO Language Codes: "ISO 639-1: Codes for the

representation of names of languages." ISO.org.

https://www.iso.org/iso-639- language-codes.html

[12]. GTTS (Google Text-to-Speech) Library: Pirate, D.

(2022). "gTTS: Python library and CLI tool to

interface with Google Text-to Speech API."

GitHub Repository.

https://github.com/pndurette/gTTS

[13]. Whisper API Documentation: Whisper Labs.

(2022). "Whisper API Documentation." Whisper

Labs Documentation.

[14]. https://whisper.ai/docs/whisper-api 14. Socket.IO

Library: "Socket.IO documentation." Socket.IO.

https://socket.io/docs/

